Gijsenij et al.

Vol. 26, No. 10/October 2009/J. Opt. Soc. Am. A 2243

Perceptual analysis of distance measures
for color constancy algorithms

Arjan Gijsenij,* Theo Gevers, and Marcel P. Lucassen

Intelligent Systems Lab Amsterdam, University of Amsterdam, Kruislaan 403, 1098 S] Amsterdam, The Netherlands
*Corresponding author: a.gijsenij@uva.nl

Received March 20, 2009; revised July 31, 2009; accepted August 20, 2009;
posted August 31, 2009 (Doc. ID 108990); published September 25, 2009

Color constancy algorithms are often evaluated by using a distance measure that is based on mathematical
principles, such as the angular error. However, it is unknown whether these distance measures correlate to
human vision. Therefore, the main goal of our paper is to analyze the correlation between several performance
measures and the quality, obtained by using psychophysical experiments, of the output images generated by
various color constancy algorithms. Subsequent issues that are addressed are the distribution of performance
measures, suggesting additional and alternative information that can be provided to summarize the perfor-
mance over a large set of images, and the perceptual significance of obtained improvements, i.e., the improve-
ment that should be obtained before the difference becomes noticeable to a human observer. © 2009 Optical

Society of America
OCIS codes: 150.0150, 330.1690, 330.5510.

1. INTRODUCTION

Color constancy is the ability of a visual system, either
human or machine, to maintain stable object color ap-
pearances despite considerable changes in the color of the
illuminant. Color constancy is a central topic in color and
computer vision. The usual approach to solve the color
constancy problem is by estimating the illuminant from
the visual scene, after which reflectance may be recov-
ered.

Many color constancy methods have been proposed,
e.g., [1-4]. For benchmarking, the accuracy of color con-
stancy algorithms is evaluated by computing a distance
measure on the same data sets such as in [5,6]. In fact,
these distance measures compute to what extent an origi-
nal illuminant vector approximates the estimated one.
Two commonly used distance measures are the Euclidean
distance and the angular error, of which the latter is prob-
ably more widely used. However, as these distance mea-
sures themselves are based on mathematical principles
and computed in normalized-rgb color space, it is un-
known whether these distance measures correlate to hu-
man vision. Further, other distance measures could be de-
fined based on the principles of human vision.

Therefore, in this paper, a taxonomy of different dis-
tance measures for color constancy algorithms is pre-
sented first, ranging from mathematics-based distances
to perceptual and color constancy specific distances. Then,
a perceptual comparison of these distance measures for
color constancy is provided. To reveal the correlation be-
tween the distance measures and perception, color-
corrected images are compared with the original images
under reference illumination by visual inspection. In this
way, distance measures are evaluated by psychophysical
experiments involving paired comparisons of the color-
corrected images. Further, following [7], a discussion of
the distribution of performance measures is given, sug-
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gesting additional and alternative information that can
be provided to give further insight into the performance of
color constancy algorithms on a large set of images.

Finally, in addition to the psychophysical evaluation of
performance measures, an analysis of the perceptual dif-
ference between color constancy algorithms is presented.
This analysis is used to provide an indication of the per-
ceptual significance of an obtained improvement in per-
formance. In other words, the result of this analysis can
be used to indicate whether an observer can actually see
the difference between color-corrected images resulting
from two color constancy algorithms.

The paper is organized as follows. In Section 2, color
constancy and image transformation is discussed. Fur-
ther, a set of color constancy methods is introduced. Then,
the different distance measures are presented in Section
3. The first type concerns mathematical measures, includ-
ing the angular error and Euclidean distance. The second
type concerns measuring the distance in different color
spaces, e.g., device-independent, perceptual, or intuitive
color spaces. Third, two domain-specific distance mea-
sures are analyzed. In Section 4, the experimental setup
of the psychophysical experiments is discussed, and the
results of these experiments are presented in Section 5. In
Section 6 various color constancy algorithms are com-
pared to show the impact of several distance measures,
and in Section 7 the perceptual significance of the differ-
ence between two algorithms is discussed. Finally, a dis-
cussion of the obtained results is presented in Section 8.

2. COLOR CONSTANCY

The image values f for a Lambertian surface depend on
the color of the light source e(\), the surface reflectance
s(x,\) and the camera sensitivity function ¢(\), where A\
is the wavelength of the light and x is the spatial coordi-
nate:
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f(x):j e(N)e(N)s(x,N)dA, (1)

where w is the visible spectrum. Assuming that the scene
is illuminated by one light source and that the observed
color of the light source e depends on the color of the light
source e(\) as well as the camera sensitivity function ¢()\),
then color constancy is equivalent to the estimation of e
by

e=f e(N)e(N)dn, (2)

given the image values of f, since both e(\) and ¢(\) are,
in general, unknown. This is an underconstrained prob-
lem, and therefore it cannot be solved without further as-
sumptions.

A. Color Constancy Algorithms

Several color constancy algorithms exist. Two well-
established algorithms are based on the retinex theory
proposed by [1]. The White-Patch algorithm is based on
the white-patch assumption, i.e., the assumption that the
maximum response in the RGB channels is caused by a
white patch. The Gray-World algorithm by Buchsbaum
[2] is based on the gray-world assumption, i.e., the as-
sumption that average reflectance in a scene is achro-
matic. Finlayson and Trezzi [3] proved these two algo-
rithms to be special instances of the more general

Minkowski norm:
1/p
f P(x)dx

Ly=| —F—— =ke. (3)
fdx

When p=1 is substituted, Eq. (3) is equivalent to comput-
ing the average of f(x); i.e., £1 equals the Gray-World al-
gorithm. When p=«, Eq. (3) results in computing the
maximum of f(v); i.e., £, equals the White-Patch algo-
rithm. This algorithm is called the Shades-of-Gray algo-
rithm.

Instead of using statistics of images for estimating the
illuminant, more complex methods are developed that use
information that is acquired in a learning phase. Possible
light sources, distributions of possible reflectance colors,
and prior probabilities on the combination of colors are
learned and used for estimating the color of the light
source. One of the first algorithms of this type is the
gamut mapping algorithm by Forsyth [8]. This algorithm
is based on the assumption that in real-world images, for
a given illuminant, only a limited number of colors can be
observed. Using this assumption, the illuminant can be
estimated by comparing the distribution of colors in the
current image to a prelearned distribution of colors
(called the canonical gamut). Many algorithms have been
derived from the original algorithm, including color by
correlation [9] and the gamut-constrained illuminant es-
timation [10]. Other approaches that use a learning phase
include probabilistic methods [11-13] and methods based
on genetic algorithms [14].
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Recently, promising results have been obtained with
edge information used instead of pixel information. For
instance, an extension of gamut mapping to incorporate
any linear filter output has been shown to outperform the
regular gamut mapping algorithm [15] by using a combi-
nation of pixel and edge information. Furthermore, an ex-
tension of the Gray-World algorithm is proposed by van
de Weijer et al. [4], resulting in the Gray-Edge assump-
tion, i.e., the assumption that the average reflectance dif-
ference in a scene is achromatic. They propose a general
framework that incorporates algorithms based on zeroth-
order statistics (i.e., pixel values) like the White-Patch,
the Gray-World, and the Shades-of-Gray algorithms, as
well as algorithms using higher-order (e.g., first- and
second-order) statistics like the Gray-Edge and second-
order Gray-Edge algorithm. The framework is given by

j

where n is the order of the derivative, p is the Minkowski
norm and f’(x)=f® G, is the convolution of the image
with a Gaussian filter with scale parameter o. By use of
this equation, many different color constancy algorithms
can be generated. For the purpose of this paper, five in-
stantiations are used, representing a wide variety of algo-
rithms:

7'f,(x)
axn

p 1/p
dX) = ken,p,a" (4)

White-Patch algorithm (e .. o)

Gray-World algorithm (e 1 o)

General Gray-World algorithm (e 13 )
First-order Gray-Edge algorithm (e ; ¢)
Second-order Gray-Edge algorithm (eg ; 5).

Many other algorithms can be generated by varying the
Minkowski norm for different orders of deviations on dif-
ferent scales.

The main purpose of this paper is not to propose a new
color constancy algorithm, nor to compare the perfor-
mance of the different algorithms. The goal in this paper
is to psychophysically analyze the several performance
measures that are used for comparing color constancy al-
gorithms. To this end, the framework proposed by van de
Weijer [4] is used to construct several result images. The
main advantages of this framework are its simplicity (i.e.,
all algorithms are derived from a similar assumption), re-
peatability (i.e., the methods are easy to implement, e.g.,
see [16] for source code, and no learning step is required),
and variability (i.e., many different methods can be sys-
tematically created, including pixel-based methods, edge-
based methods and higher-order methods, with varying
performance). Since the experiments involve human sub-
jects, the number of observations that can be made by the
subjects are limited. Therefore, the methods that are used
are restricted to the five instantiations of this framework
mentioned earlier.

B. Image Transformation

Once the color of the light source is estimated, this esti-
mate can be used to transform the input image to be
taken under a reference (often white) light source. This
transformation can be modeled by a diagonal mapping or
von Kries model [17]. This model is an approximation and
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might not be able to model photometric changes accu-
rately because of disturbing effects like highlights and in-
terreflections. However, it is widely accepted as a color
correction model [18-20], and it underpins many color
constancy algorithms (e.g., gamut mapping [8] and the
framework of methods used [4]). The model is given by

R°¢ a 0 O\/R"
fr=pvfi=|G|=[0 B 0| G|, (5)
B) \o 0 4/ \B“

where f* is the image taken under an unknown light
source, f* is the same image transformed, so that it ap-
pears as if it were taken under the reference light, and
D“€ is a diagonal matrix that maps colors that are taken
under an unknown light source u to their corresponding
colors under the canonical illuminant ¢. The diagonal
mapping is used throughout this paper to create output
images after correction by a color constancy algorithm.

3. DISTANCE MEASURES

Performance measures evaluate the performance of an il-
luminant estimation algorithm by comparing the esti-
mated illuminant to a ground truth, which is known a pri-
ori. Since color constancy algorithms can recover the color
of the light source only up to a multiplicative constant
(i.e., the intensity of the light source is not estimated),
distance measures compute the degree of resemblance in
normalized rgb:

R G B
r= , 8= , b= .
R+G+B R+G+B R+G+B

(6)

In color constancy research, two frequently used perfor-
mance measures are the Euclidean distance and the an-
gular error, of which the latter is probably more widely
used. The Euclidean distance d,,. between the estimated
light source e, and the ground truth light source e, is
given by

deuc(ee’eu) = \"/(re - ru)2 + (ge _gu)2 + (be - bu)2~ (7)

The angular error measures the angular distance be-
tween the estimated illuminant e, and the ground truth
e, and is defined as

e, e,
dangle(eeaeu) = COS_1<—) s (8)
lecl| - lle.|

where e, e, is the dot product of the two illuminants and
|l is the Euclidean norm of a vector.

Although the value of these two distance measures in-
dicates how closely an original illuminant vector is ap-
proximated by the estimated one (after intensity normal-
ization), it remains unclear how these errors correspond
to the perceived difference between the output of a color
constancy algorithm and the ground truth. Further, other
distances can be derived. To this end, in this section, a
taxonomy of different distance measures for color con-
stancy algorithms is presented. The different distance
measures are defined ranging from mathematics-based
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distance measures (Subsection 3.A) to perceptual mea-
sures (Subsection 3.B) and color constancy specific mea-
sures (Subsection 3.C).

A. Mathematical Distance

The two distance measures that have been discussed so
far (i.e., the angular error and the Euclidean distance)
can be considered to be mathematical measures. In this
Subsection, other mathematical measures are introduced
by considering the more general Minkowski family of dis-
tances, denoted dygnk, of which the Euclidean distance is
a member:

dMink(ee,eu) = (|re - ru|p + ‘ge _gu|p + |be - bu|p)1/p’ (9)

where p is the corresponding Minkowski norm. In this pa-
per, three special cases of this distance measure are
evaluated. These three measures are the Manhattan dis-
tance (dpyan) for p=1, the Euclidean distance (d,,.) for p
=2, and the Chebychev distance (dgp) for p=c°.

B. Perceptual Distances
The goal of the color constancy algorithms is to obtain an
output image that is identical to a reference image, i.e.,
an image of the same scene taken under a canonical, often
white, light source. Therefore, perceptual distance mea-
sures as well as mathematical distance measures are in-
cluded in the analysis. For this purpose, the estimated
color of the light source and the ground truth are first
transformed to different (human vision) color spaces, af-
ter which they are compared. Therefore, in this section,
the distance is measured in the (approximately) perceptu-
ally uniform color spaces CIELAB and CIELUV [21], as
well as in the more intuitive color channels chroma C and
hue h. Further, in addition to the Euclidean distance be-
tween CIELAB colors, the CIEDE2000 [22] is computed,
since the metric is shown to be more uniform and is con-
sidered to be state of the art in industrial applications.
Most color constancy algorithms are restricted to esti-
mating the chromaticity values of the illuminant. To
evaluate the performance of the light source estimations
in different color spaces, both the (intensity normalized)
estimate and the ground truth light source are applied to
a perfect reflecting diffuser. Hence, two sets of (R,G,B)
values are obtained, representing the nominally white
object-color stimulus under the estimated light source
and under the true light source. These (R,G,B) values
can consequently be converted to different color spaces.
Conversion from RGB to XYZ is device dependent, e.g.,
depending on the camera settings. Many different RGB
working spaces can be defined, but since the monitor that
is used in the experiments closely approximates the SRGB
standard monitor profile (see Subsection 4.B), the conver-
sion matrix is based on the sRGB color model [23]:

X 0.4125 0.3576 0.1804\/R
Y |=|0.2127 0.7152 0.0722 || G |. (10)
Z 0.0193 0.1192 0.9502/\B
Differences in the conversion matrix can occur if the RGB
working space of an image is known to be different from

sRGB, e.g. Adobe RGB, NTSC RGB or CIE RGB. In Sec-
tion 5, the effects of using other conversion matrices,
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based on several RGB working spaces, are discussed.

After conversion to XYZ, the two (approximately) per-
ceptual color models L*a*b* and L*u*v* are defined using
X,,Y,,Z,)=(0.9505,1.0000,1.0888) as reference white,
which is the appropriate reference white for the sRGB
color model [24]. From these perceptual color spaces, dif-
ferent color channels can be computed, such as chroma C
and hue A. The transformation from L*a*b* to C* and h is
given by

b>:<
Cly= @)+ (6%, hgy= tan*(—.), (11
"

and analogously for L*u*v*.

Finally, it is known that the spectral sensitivity of the
human eye is nonuniform. This important property of the
human visual system is used, for instance, in the conver-
sion of RGB images to luminance images [25]. A deviation
in one color channel might have a stronger effect on the
perceived difference between two images than a deviation
in another channel. This leads us to the introduction of
the weighted Euclidean distance, or perceptual Euclidean
distance (PED). The weights for the different color chan-
nels are described as sensitivity measures as follows:

PED(eeveu) = \“”wR(re - ru)2 + wG(ge _gu)2 + wB(be - bu)za
(12)

where wp+wg+wp=1. Note that CIELAB and CIELUV
also have weighting terms modifying different dimen-
sions. However, these color spaces are just two instantia-
tions, while the weighted Euclidean distance covers a
large range of instantiations.

C. Color Constancy Distances

In this Subsection, two color constancy specific distances
are discussed. The first is the color constancy index CCI
[26], also called the Brunswik ratio [27], and is generally
used to measure perceptual color constancy [28,29]. It is
defined as the ratio of the amount of adaptation that is
obtained by a human observer versus no adaptation at
all:

CCI=b/a, (13)

where b is defined as the distance from the estimated
light source to the true light source and «a is defined as the
distance from the true light source to a white reference
light. During evaluation, several different color spaces are
used to compute the values a and b.

The second is a new measure, called the gamut inter-
section, which makes use of the gamuts of the colors that
can occur under a given light source. It is based on the as-
sumption underlying the gamut mapping algorithm; i.e.,
under a given light source, onlya limited number of colors
are observed. The difference between the full gamuts of
two light sources is an indication of the difference be-
tween these two light sources. For instance, if two light
sources are identical, then the gamuts of colors that can
occur under these two light sources will coincide, while
the similarity of the gamuts will be smaller if the differ-
ence between the two light sources is larger. The gamut
intersection is measured as the fraction of colors that oc-
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cur under the estimated light source, with respect to the
colors that occur under the true, ground truth, light
source:

vol(G, N G,)

vol(G,) (14

dgamut(ee’ eu) =

where G; is the gamut of all possible colors under illumi-
nant ¢ and vol(G;) is the volume of this gamut. The gamut
G, is computed by applying the diagonal mapping, corre-
sponding to light source i, to a canonical gamut.

4. EXPERIMENTAL SETUP

In this section, the experimental setup of the psycho-
physical experiments is discussed. The experiments are
performed on two data sets, one containing hyperspectral
recordings of natural and rural scenes, and the other con-
taining a range of indoor and outdoor scenes, measured in
RGB. The images are shown on a calibrated color monitor,
and observers are shown images in a pairwise comparison
paradigm. For each pair of color-corrected images, the ob-
servers have to specify which of the two images is closer
to the ideal result (which is also shown). In this way, com-
parison of the distance measures (objective performance)
and visual judgment (subjective performance) is carried
out by computing the correlation between the two perfor-
mance measures.

A. Data

Two data sets are used for the psychophysical experi-
ments. The first data set consists of hyperspectral images
and is used to perform a thorough, i.e., colorimetrically
correct, analysis. The second data set consists of RGB im-
ages and is used to analyze the results of the experiments
with the first data set.

Hyperspectral data. The first data set, originating from
[29], consists of eight hyperspectral images, of which four
are shown in Figs. 1(a)-1(d). These images are chosen in
order to be able to study realistic, i.e., colorimetrically cor-
rect, and naturally occurring changes in daylight illumi-
nation.

Similar to the work of Delahunt and Brainard [28], one
neutral illuminant (CIE D65) and four chromatic illumi-
nants (red, green, yellow, blue) are selected to render im-
ages under different light sources. The spectral power dis-
tributions of the selected illuminants are shown in Fig.
2(a) and are created with the use of the CIE daylight ba-
sis function, as described in [24]. In Fig. 2(b), images of
scene 3 rendered under these four illuminants are shown.

RGB images. The second data set consists of 50 RGB
images, both indoor and outdoor. These images are taken
from [5], which is a large data set (originally containing
over 11,000 images) that is well known in color constancy
research. For all images, the ground truth of the color of
the light source is known from a gray sphere that was
mounted on top of the camera. This gray sphere is
cropped during the experiments. Some example images
are shown in Figs. 1(e)-1(h). Images from this data set
are not as well calibrated as the hyperspectral set and are
therefore used mostly to confirm the results on the hyper-
spectral data.
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Fig. 1.

illuminant. In (e)—(h), four examples of the RGB images are shown.

B. Monitor

Images are viewed on a high-resolution (1600 X 1200 pix-
els, 0.27 mm dot pitch) calibrated LCD monitor, an Eizo
ColorEdge CG211. The monitor is driven by a computer
system having a 24 bit (RGB) color graphics card operat-
ing at a 60 Hz refresh rate. Colorimetric calibration of the
LCD is performed before each experimental session by us-
ing a GretagMacbeth Eye-one spectrophotometer. Com-
bined with ColorNavigator software from Eizo, this setup
allows self-calibration of the monitor at specified target
settings for the white point, black level, and gamma val-
ues. The monitor is calibrated to a D65 white point of
80 cd/m?, with gamma 2.2 for each of the three color pri-
maries. CIE 1931 x,y chromaticities coordinates of the
primaries were (x,y)=(0.638,0.322) for red, (0.299,0.611)
for green, and (0.145,0.058) for blue, respectively. These
settings closely approximate the sRGB standard monitor
profile [23], which is used for rendering the spectral
scenes under our illuminants. Spatial uniformity of the

8
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Fig. 2.

(b)
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(d)

(h)

(Color online) Four examples of the hyperspectral scenes used in this study are shown in (a)-(d), rendered under the neutral D65

display, measured relative to the center of the monitor, is
AE,,<1.5 according to the manufacturer’s calibration
certificates.

C. Observers

All observers that participated in the experiments have
normal color vision and normal or corrected-to-normal vi-
sual acuity. Subjects are screened for color vision deficien-
cies with the HRR pseudo-isochromatic plates (fourth edi-
tion), allowing color vision testing along both the red—
green and yellow—blue axes of color space [30]. After
taking the color vision test, our subjects first adapted for
about 5 min to the light level in a dim room that only re-
ceived some daylight from a window that is covered with
sunscreens (both inside and outside). In the meantime
they were made familiar with the experimental proce-
dure.

(Color online) Relative spectral power distribution of the illuminants used in the experiments. Left, illuminant spectra; right,

illuminants applied to scene 3. The illuminants are created with the CIE basis functions for spectral variations in natural daylight and
were scaled such that a perfectly white reflector would have a luminance of 40 cd/m?2. The four chromatic illuminants red, green, yellow,
and blue are perceptually at an equal distance (28 AE,;) from the neutral (D65) illuminant.
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D. Experimental Procedure

The experimental procedure consists of a sequence of im-
age comparisons. The subjects are shown four images at
once, arranged in a square layout, on a gray background
having L*=50 and a*=b*=0, see Fig. 3. The upper two im-
ages are (identical) reference images, representing the
test scene. The lower two images correspond to the result-
ing output of two different color constancy algorithms, ap-
plied to the original test scene (i.e., the scene under a cer-
tain light source). Subjects are instructed to compare the
color reproduction of each of the lower images with the
upper references. Both the global color impression of the
scene and the colors of local image details are to be ad-
dressed. Subjects then indicate (by pressing a key on the
computer’s keyboard) which of the two lower images has
the best color reproduction. If the color reproduction of
the two test images is identical (as good or as bad), the
subjects have the possibility of indicating this. Subjects
are told that response time would be measured, but that
they are not under time pressure; they can use as much
time as they need to come to a decision.

In each trial of our paired-comparison experiment, two
color constancy algorithms are competing, the result of
which can be interpreted in terms of a win, a loss, or a tie.
Each of the five color constancy algorithms is competing
with every other algorithm once, for every image and il-
luminant, in tournament language known as a single
round-robin schedule [31]. We apply a scoring mechanism
in which the color constancy algorithm underlying a win
is awarded with 1 point and the algorithm underlying a
loss with no points. In case of a tie, the competing algo-
rithms both receive 0.5 point. Ranking of the algorithms
can then be performed by simply comparing the total
number of points. The above scoring mechanism is
straightforward and makes no distributional assump-
tions.

5. RESULTS

Experimental results are processed on an average-
observer basis. The interobserver variability is analyzed
first, after which the results of the observers are averaged
to come to robust subjective scores. Next, correlation be-
tween these subjective scores and the several objective
measures is determined by using linear regression. Since
the objective measures are absolute error values and the
subjective measure depicts a relative relation between the
algorithms, the objective measures are converted to rela-
tive values. This is done by using the same round-robin
schedule as used with the human observers, this time us-
ing the error values as the criterion to decide which result
is better.

A. Hyperspectral Data

The experiments on the hyperspectral data are run in two
sessions, with four scenes per session. Per session, a total
of 160 comparisons are made (4 scenes X 4 illuminants X
10 algorithm combinations). Half of the subjects started
with the first set, the other half with the second set. The
two images that are to be compared in a trial always be-
long to the same chromatic illuminant. The sequence of
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Fig. 3. (Color online) Screen capture of an experimental trial.
Subjects indicate which of the two bottom images (resulting from
two different color constancy algorithms) is the best match to the
upper reference image. Background dimensions are 39.6° X 30.2°
visual angle. Horizontal and vertical separation between the im-
ages was 2.1° and 1.4°, respectively. The hyperspectral images
are 16.6° X 12.7°, the RGB images are 6.2° X 6.2°.

the trials is randomized, and the two test images are ran-
domly assigned to left and right positions.

Eight observers participated in this experiment, four
men and four women, with ages ranging from 24 to 43
years (an average of 34.6). At a viewing distance of about
60 cm, each of the four images subtended a visual angle of
16.6° X 12.7°. Horizontal and vertical separation between
images was 2.1° and 1.4°, respectively.

Interobserver variability. As a measure of the interob-
server variability, the individual differences from the
mean observer scores are computed, a procedure that is
often used in studies involving visual judgements, e.g.,
[32,33]. For each observer, the correlation coefficient of
his or her average algorithm scores (averaged over scenes
and illuminants) with the algorithm scores of the average
observer is computed. The correlation coefficients so ob-
tained vary from 0.974 to 0.999, with an average of 0.990.
Correlation coefficients between scores of the individual
observers range from 0.937 to 0.997. The significance of
this result becomes clear when these high values are com-
pared with the values that can be obtained from random
data. Based on random generated responses for each trial,
with 45%, 45%, 10% chances for a win, loss, or tie, respec-
tively, the correlation coefficients of the simulated indi-
vidual observers range from 0.074 to 0.948, with an aver-
age of 0.396. Correlation coefficients between actual
individual observers in this case range from —0.693 to
0.945. Since the agreement between observers is consid-
ered good, in the remainder we will discuss the results
only for the average observer.

Mathematical measures versus subjective scores. First,
the angular error d,;g is analyzed, since this measure is
probably the most widely used performance measure in
color constancy research. Overall, the correlation between
the angular error and the perception of the human ob-
server is reasonably high, with an average correlation co-
efficient of 0.895; see Table 1, where the correlation coef-
ficients on the spectral data set for all distance measures
are summarized. Also shown in this table are the results



Gijsenij et al.

Table 1. Correlation Coefficients p for Several
Distance Measures and Color Spaces with
Respect to the Subjective Measure”

Hyperspectral
Data Images
Measure p t test p t test
dangle 0.895 3 0.926 3
dman 0.893 3 0.930 3
deue 0.890 3 0.928 3
dsup 0.817 3 0.906 3
doue—L*a+b* 0.894 4 0.921 3
AE [ -La*b* 0.896 4 0.916 3
deue—Liwve 0.864 3 0.925 3
dewe—C+h 0.646 0 0.593 1
deue—C 0.619 0 0.562 1
dewe—h 0.541 0 0.348 0
PEDyjperspectral 0.963 14 — —
PEDggs — — 0.961 15
PED,,,0posed 0.960 14 0.957 15
CCI(d angle) 0.895 3 0.931 3
CCI(deye,rGB) 0.893 3 0.929 3
CCI(deuc,Larb+) 0.905 4 0.921 3
CCI(d e, o) 0.880 3 0.927 3
d gamut 0.965 14 0.908 3

“The subjective measure is derived from human observers. Significance is shown
using a Student’s 7 test (at the 95% confidence level). The score in the column 7 test
represents the number of times the null hypothesis (i.e., that two distance measures
have a similar mean correlation coefficient) is rejected.
of a paired comparison between the different measures. A
Student’s ¢ test (at 95% confidence level) is used to test
the null hypothesis that the mean correlation coefficients
of two distance measures are equal, against the alterna-
tive hypothesis that measure A correlates higher with the
human observer than measure B. When every distance
measure is compared with all others, a score is generated
representing the number of times the null hypothesis is
rejected, i.e., the number of times that the correlation co-
efficient of the given distance measure is significantly bet-
ter than the other measures.

Instead of looking at the average correlation over all
images, as for the hyperspectral data in Table 1, we now
analyze the correlation of all images individually. For
most images, the correlation is relatively high (correlation
coefficient p > 0.95), while for some images the correla-
tion is somewhat lower, but still acceptable (p > 0.8). In a
few cases, however, the correlation is rather low (p < 0.7).
When the results of the images with such a low correla-
tion are observed, the weakness of the angular error be-
comes apparent. For these images, results of some images
are judged worse than indicated by the angular error,
meaning that human observers do not agree with the an-
gular error. The angular errors for the corresponding im-
ages are similar, but visual inspection of the results show
that the estimated illuminants (and hence the resulting
images) are far from similar. In conclusion, from a percep-
tual point of view, the direction in which the estimated
color of the light source deviates from the ground truth is
important. Yet, the angular error, by nature, ignores this
direction completely.
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The correlation between the Euclidean distance and
the human observer is similar to the correlation of the an-
gular error, i.e., p = 0.890. The other two instantiations of
the Minkowski distance, i.e., the Manhattan distance
(dman) and the Chebychev distance (d,;), have a correla-
tion coefficient of p = 0.893 and p = 0.817, respectively.
The correlation coefficients of other Minkowski-type dis-
tance measures are not shown here, but vary between p =
0.89 and p = 0.82. In conclusion, none of these math-
ematical distance measures is significantly different from
the others.

Perceptual measures versus subjective scores. First, the
estimated illuminant and the ground truth are converted
from normalized-rgb to RGB values. This is done by com-
puting the two corresponding diagonal mappings to a per-
fect white reflectance, in order to obtain the RGB values
of a perfect reflectance under the two light sources. These
RGB values are then converted to XYZ and the other
color spaces, after which they are compared by using any
of the mathematical measures. For simplicity, the Euclid-
ean distance is used.

For comparison, recall that the correlation between the
human observers and the Euclidean distance of the
normalized-rgb values is 0.895. When the correlation of
the human observers with the Euclidean distance in dif-
ferent color spaces is computed, the lightness channel L*
is omitted, since the intensity of all estimates is artifi-
cially imposed and similar for all light sources. Correla-
tions of human observers and distance measured in the
perceptual spaces L*a*b* (p = 0.902) and L*u*v* (p =
0.872) are similar to the correlation of the human observ-
ers with the Euclidean distance in normalized-rgb space.
When computing the Euclidean distance in color spaces
such as hue and chroma, the correlation is remarkably
low; considering both chroma and hue, the correlation is
0.646, which is significantly lower than the correlation of
other color spaces. Considering chroma or hue alone, the
correlation drops even further to p = 0.619 and p = 0.541,
respectively. In conclusion, using perceptual uniform
spaces provides similar or lower correlation than rgb.

As is derived from the analysis of the results of the an-
gular error, it can be beneficial to take the direction of a
change in color into consideration. In this paper, this
property is computed by the perceptual Euclidean dis-
tance (PED), by assigning higher weights to different
color channels. The question remains, however, what val-
ues to use for the weights. For this purpose, an exhaus-
tive search was performed to find the optimal weighting
scheme, denoted PEDpyperspectral in Table 1. The weight
combination (wg,wqg,wg)=(0.20,0.79,0.01) results in the
highest correlation (p = 0.963); see Fig. 4(a).

Color constancy measures versus subjective scores. The
color constancy index makes use of a distance measure as
defined by Eq. (13), where b is defined as the distance
from the estimated light source to the true light source
and a is defined as the distance from the true light source
to a white reference light. To compute the distance, the
angular error in normalized-rgb and the Euclidean dis-
tance in RGB, L*a*b*, and L*u*v* are used. From Table 1,
it is derived that the highest correlation with the human
observers is obtained when the color constancy index is
measured with L*a*b* (p = 0.905). However, differences
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Fig. 4. (Color online) Plot of the correlation coefficients of the weighted Euclidean distance with respect to the human observer (psy-
chophysical data). Only the dependency on weight coefficients wg and wg are shown here; wp follows from wp=1-wr-wg. Left, the
results of experiments using the hyperspectral data are demonstrated; right, results of the experiments with the RGB images.

between other distance measures are small. In conclu-
sion, the color constancy index does not correlate better
with human observers than the mathematical measures.

The gamut intersection distance measures the distance
of the gamuts under the estimated light source and the
ground truth. These gamuts are created by applying the
corresponding diagonal mappings to a canonical gamut.
This canonical gamut is defined as the gamut of all colors
under a known, often white, light source and is con-
structed by using a widely used set of 1995 surface spec-
tra [6] combined with a perfect white illuminant. The cor-
relation of this measure is surprisingly high (see Table 1):
p = 0.965, which is even slightly higher than the correla-
tion of the perceptual Euclidean distance (PED).

Discussion. From Table 1, (hyperspectral data), it is de-
rived that the correlation of the angular error with the
judgment of the human observers is reasonable and simi-
lar to the other mathematical measures; i.e., there is no
significant difference at the 95% confidence level. Measur-
ing the distance in perceptual color spaces such as L*a*b*
and L*u*v* does not increase the correlation with human
observers. Using chroma C and hue A significantly de-
creases the correlation with the human observers. The
gamut intersection distance and the perceptual Euclidean
distance have the highest correlation with the human ob-
servers. In fact, they have significantly higher (at the 95%
confidence level) correlation than all other distance mea-
sures. Hence, the gamut and perceptual Euclidean dis-
tances are significantly better than all other distance
measures on the spectral data set.

B. RGB Images

The experiments on the RGB images are run in three ses-
sions, with the number of images equally divided into
three parts. The sequence of the sets is randomized for ev-
ery observer. In this experiment, seven observers partici-
pated (four men and three women), with ages ranging
from 24 to 43 years. The difference between the observers
is analyzed similarly to the experiments on the hyper-
spectral data, and again the agreement of the individual
observers is found to be sufficiently high: the correlation
coefficients vary from 0.894 to 0.977, with an average of
0.953. Correlation coefficients between scores of the indi-

vidual observers range from 0.638 to 0.980. For this ex-
periment, the correlation coefficients based on random
generated responses vary from —0.634 to 0.772, with an
average of 0.280. Correlation between random individual
observers ranges from —0.923 to 0.889. The agreement is
considered good, and consequently, only the results for
the average observer are discussed.

Objective versus subjective scores. In general, the same
trends in this data set as in the hyperspectral data are ob-
served; see Table 1, RGB images. The correlation coeffi-
cients are slightly higher than the spectral data set, but
the ordering between the different measures remains the
same. For the mathematical measures, the angular dis-
tance (p = 0.926) the Manhattan distance (p = 0.930), and
the Euclidean distance (p = 0.928) are similar, while the
Chebychev distance has a lower correlation with human
observers (p = 0.906). Results of the perceptual measures
also show a similar trend. Correlation coefficients of the
perceptual color spaces are similar to the mathematical
measures, while the intuitive color spaces are signifi-
cantly lower. Again, the perceptual Euclidean distance
has the highest correlation (p = 0.961). This correlation is
obtained with the weights (wgp,wqg,wg)=(0.21,0.71,0.08),
denoted PEDggp in Table 1; see also Fig. 4(b). The results
for the color constancy specific distances are slightly dif-
ferent from the results obtained from the hyperspectral
data. The results of the color constancy index are similar,
but the correlation of the gamut intersection distance
with the human observers is considerably lower for this
data set.

Device dependency. As explained in Subsection 3.B, the
transformation from RGB to L*a*b* and L*u*v* is depen-
dent on the conversion from RGB to XYZ. If the RGB
working space is known, as in the case of the hyperspec-
tral data in Subsection 5.A, then the conversion from
RGB to XYZ can be performed accurately. However, the
correct conversion from RGB to XYZ for the images that
are currently used, i.e., the RGB images, is unknown. In
order to analyze the effect of the XYZ transformation, we
used 16 frequently used RGB working spaces (of which
sRGB is the most widely used) to compute the transfor-
mation from RGB to XYZ, adapted from [34]. As a result,
we obtained 16 different values for the correlation coeffi-



Gijsenij et al.

cients of the distance measures based on the L*a*b* and
L*u*v* color spaces. The results that are reported in Table
1, RGB images, are obtained by using the conversion from
sRGB to XYZ, but differences with the other RGB work-
ing spaces are small. For instance, the average correla-
tion coefficient over 16 working spaces for the Euclidean
distance of the L*u*v* values is 0.920 (with a standard de-
viation of 0.006), while the correlation coefficient when
assuming the sRGB color space is 0.916. From these re-
sults it is concluded that the conversion from RGB to XYZ
has only a marginal effect on the correlation coefficients.

Discussion. The results of the experiments on the RGB
images, Table 1, correspond to the results of the experi-
ments on the hyperspectral data. Note, though, that the
images in this data set are gamma corrected (with an un-
known value for gamma) before the color constancy algo-
rithms are used to color correct the images. Applying
gamma correction previously to the color constancy algo-
rithms affects the performance of the algorithms, but this
effect was not investigated in this paper.

The most noticeable difference between the results for
this data set and the results for the previous data set is
the correlation of the gamut intersection distance. This
distance has the highest correlation with the human ob-
servers for the hyperspectral data. However, for the RGB
images, the correlation is considerably lower, though not
significantly lower, than for the other measures. The cor-
relation of the perceptual Euclidean distance for the RGB
images is still significantly higher than the correlation of
all other distance measures. To obtain a robust, stable
combination of weights, the results of the exhaustive
search on the hyperspectral data and the RGB images are
averaged. The optimal correlation is found for the weight
combination (wg,wqg,wp)=(0.26,0.7,0.04). With these
weights, the correlation of the perceptual Euclidean dis-
tance with human observers for the hyperspectral data is
0.960, and for the RGB images is 0.957, denoted
PEDyoposea in Table 1. Both are still significantly higher
(at the 95% confidence level) than all other distance mea-
sures.

6. COMPARING ALGORITHM
PERFORMANCE

The different error measures that are discussed in this
paper allow a comparison of different color constancy al-
gorithms used on an image data set. However, as was
shown by Hordley and Finlayson [7], different summariz-
ing statistics can lead to different conclusions. For in-
stance, if the distribution of errors of a specific data set is
severely skewed, then the mean error is not an accurate
summary of the underlying distribution, and conse-
quently comparing the mean error of two color constancy
algorithms might result in wrong conclusions about the
performance of those algorithms. This section provides an
analysis of the proposed perceptual Euclidean distance, to
identify which summarizing statistic is most suited. Fur-
ther, some characteristics are presented and compared
with the characteristics of the angular error.

A. Distribution of Errors
When evaluating the performance of color constancy algo-
rithms on a whole data set instead of on a single image,
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the performances on all individual images need to be
summarized into a single statistic. This is often done by
taking the mean, root mean square, or median of, for in-
stance, the angular errors of all images in the data set. If
the error measures are normally distributed, then the
mean is the most commonly used measure for describing
the distribution, and the root mean square provides an es-
timate of the standard deviation. However, if the metric is
not normally distributed, for instance, if the distribution
is heavily skewed or contains many outliers, then the me-
dian is more appropriate for summarizing the underlying
distribution [35].

From previous work, it is known that the angular error
is not normally distributed [7]. To test whether the per-
ceptual Euclidean distance is normally distributed, a
similar experiment as in [7] is conducted. In Fig. 5, the
errors for the White-Patch algorithm on the 11,000 im-
ages from the RGB images data set [5] are plotted, from
which it is clear that both the angular error and the per-
ceptual Euclidean distance are not normally distributed.
The distributions of both metrics have a high peak at
lower error rates, and a fairly long tail. For such distribu-
tions, it is known that the mean is a poor summary sta-
tistic, and hence, previously, it was proposed to use the
median to describe the central tendency [7]. Alternatively,
to provide more insight into the complete distribution of
errors, one can calculate box plots or compute the trimean
instead of the median. Box plots are used to visualize the
underlying distributions of the error metric of a given
color constancy method, as an addition to a summarizing
statistic. This summarizing statistic can be the median,
as proposed by Hordley and Finlayson [7], or it can be the
trimean, a statistic that is robust to outliers (the main ad-
vantage of the median over a statistic like the root mean
square), but still has attention to the extreme values in
the distribution [36,37]. The trimean (TM) can be calcu-
lated as the weighted average of the first, second, and
third quantile @1, @2, and @3, respectively:

TM = 0.25Q, + 0.5Q, + 0.25Q;. (15)

The second quantile @4 is the median of the distribution,
and the first and third quantiles @; and Q3 are called
hinges. In other words, the trimean can be described as
the average of the median and the midhinge.

B. Analysis of Results
In this section, two comparisons of color constancy algo-
rithms are presented, to analyze the effects of the pro-
posed perceptual Euclidean distance and the different
summarizing statistics. The first comparison is based on
methods from the color constancy framework proposed by
van de Weijer et al. [4]. The second comparison uses pixel-
based and edge-based gamut mapping algorithms pro-
posed by Gijsenij et al. [15]. The data set that is used to
compare the methods is the full RGB images data set
with over 11,000 images [5]. This set is chosen because it
is well known and widely used in color constancy research
[4,13,15,38-42]. Note that the purpose of this section is
not to provide a large-scale comparison, but to gain in-
sight into the behavior of the perceptual Euclidean dis-
tance with respect to the angular error.

Low-level color constancy. Eight methods are created
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using the framework of [4], all with different properties.
Four methods use pixel values, two methods use edges,
and another two methods use higher-order statistics for
estimating the illuminant, all constructed by applying dif-
ferent parameters to Eq. (4). The different parameter set-
tings obviously result in different performances. However,
as Table 2 shows, the ranking of the methods is quite de-
pendent on the summarizing statistic and evaluation
metric that are used. When the angular error is compared
with the perceptual Euclidean distance, no large differ-
ences in ranking are observed. The White-Patch algo-
rithm (i.e., eg .. o) ranks higher when the median percep-
tual Euclidean distance is considered as compared with
the median angular error, and the ordering of some algo-
rithms is reversed when the trimean is considered. How-
ever, comparing the median and the trimean as measures
for central tendency reveals some changes, even though
both statistics are insensitive to outliers. The trimean,
with a higher focus on extreme values than the median,
ranks the second-order Gray-Edge lower than the first-
order Gray-Edge, while the median inverts this ranking.
This difference is caused by a larger spread in perfor-
mance of the second-order Gray-Edge; see Fig. 6. Even
though the first-order Gray-Edge method has outliers
with higher errors, the spread from the first to the third
quantile is larger for the second-order Gray-Edge. This in-
dicates that the errors of the first-order Grey-Edge are

Table 2. Ranking of Methods Created by Using
Color Constancy Framework of [4]

Perceptual Euclidean

Angular Error Distance

Method Median Trimean Median Trimean
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(Color online) Distribution of estimated illuminant errors for the White-Patch algorithm, obtained for a set of over 11,000

more condensed around the median, with the exception of
a few outliers.

Gamut mapping. Five gamut mapping methods are
compared, two using pixel values [G7=3(f) and G=>(f), dif-
fering only in the size of the filter that is used to smooth
the image], and three using edges [G°=1(Vf), G"=2(Vf), and
Go=3(Vf), again differing only in the size of the filter that
is used to compute the edges]. Again, completely different
ranking results are obtained when different summarizing
statistics are used; see Table 3. For the median, the best-
performing method is the edge-based gamut mapping
with a filter size of o = 1. However, when considering the
trimean, it can be derived that perhaps it is better to use
a filter size of o = 2. An explanation for this shift can be
found in Fig. 7, which shows that using a filter size of o =
2 results in a distribution that is more densely sampled
around the median, so this filter size is more appropriate
for a larger set of images.

When comparing the angular error with the perceptual
Euclidean distance, it is noticed that the differences are
small but that the rankings are shifted in favor of pixel-
based gamut mapping. For the perceptual Euclidean dis-
tance, the difference between the median and the trimean
is minor, which is also reflected in the minor differences
between the box plots shown in Fig. 7.
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Fig. 6. (Color online) Box plots of the angular error and the per-
ceptual Euclidean distance for several color constancy methods of
the framework from [4].
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Table 3. Ranking of Several Gamut Mapping
Methods, from [15]

Angular Perceptual Euclidean
Error Distance
Method Median Trimean Median Trimean
Go=3(f) 2 4 1 1
Go=5(f) 5 5 3 2
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Go=2(Vf) 3 1 4 4
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Fig. 7. (Color online) Box plots of the angular error and the per-
ceptual Euclidean distance for several gamut-mapping methods
taken from [15].

In conclusion, the tail of the distribution of estimated
illuminant errors can play an important role in evaluat-
ing color constancy performance.

7. PERCEPTUAL SIGNIFICANCE

This section is devoted to the notion of the perceptual sig-
nificance of the performance difference between two algo-
rithms. The fact that the difference between two algo-
rithms is statistically significant might not always justify
the conclusion that one algorithm is better than the other.
For instance, using the Wilcoxon sign test (or some other
hypothesis test) to show that algorithm A performs sig-
nificantly better than algorithm B merely shows that the
error of algorithm A is often lower than the error of algo-
rithm B. It does not show how much lower, nor does it tell
if this difference is noticeable to a human observer.
Color constancy performance evaluation is often done
with respect to a ground truth, i.e., computing the error
for a number of methods on a large set of images. The
methods are then compared by analyzing the summariz-
ing statistic of the distribution of errors, sometimes ac-
companied by significance testing. However, significance
testing is limited to hypothesis testing, with which the
distributions of the errors are compared. Consequently, in
the literature the differences between two methods have
not been analyzed psychophysically yet. The question re-
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mains whether an observer would even notice the differ-
ence between the results of two color constancy methods.

A few attempts have been made to quantify the term
“acceptable color reproduction.” For instance, Funt et al.
[43] stated that the root mean squared Euclidean error of
the estimated chromaticity value should be 0.04 at most,
for accurate color-based object recognition. In terms of an-
gular error, a deviation of 1° with respect to the ground
truth was found to be not noticeable, while an angular er-
ror of 3° was found noticeable but acceptable [44,45].
From an analysis, Hordley [46] derives that an angular
error of 2° represents good enough color constancy for
complex images. However, these values are all with re-
spect to the ground truth; the perceptual difference be-
tween two algorithms is not discussed.

A. Just Noticeable Difference

In this section, the data that are obtained from the psy-
chophysical experiments are used to obtain a measure for
the notion of just noticeable difference. As was explained
in Section 4, the observers had the possibility of indicat-
ing that the quality of two color constancy reproductions
is the same (as good or as bad). These responses are used
and analyzed here. When an observer indicates that the
color reproductions are identical, this does not necessarily
mean that the considered images are close enough to the
ground truth. It means that the observer could not ob-
serve the difference between the result of algorithm A and
the result of algorithm B. Hence, from these responses it
can be extracted whether the difference between two al-
gorithms is psychophysically significant. However, note
that the observers were not explicitly instructed to indi-
cate whether or not they could see the difference between
two color reproductions.

Following Weber’s law [47], it is to be expected that as
the absolute error of two algorithms increases, the just
noticeable difference between these two algorithms in-
creases too. So, if two algorithms would have angular er-
rors of 3° and 4°, then the difference between these two
algorithms will most likely be apparent to most people.
However, if these two algorithms would have errors of 15°
and 16°, then it is likely that the difference between these
two algorithms is less noticeable (if noticeable at all).

For the analysis of the hyperspectral data, the differ-
ence between two algorithms is defined as not noticeable
if at least three of the eight observers agreed that the
color reproductions are identical. From our data, this re-
sults in 36 comparisons corresponding to approximately
11% of all comparisons for one observer. Every compari-
son is characterized by the tuple (€pax,€min,A€), Where
€max 18 the maximum error of the two methods, €,;, is the
minimum error, and A€= ey —€nin 18 the difference be-
tween the two methods, called the relative error level.
From the set of 36 comparisons, consider those compari-
sons with an absolute error level €., between ¢; and ¢;.
From these comparisons, the average of the relative error
level A€ is computed. The results for the angular error
and the perceptual Euclidean distance, together with lin-
ear regression lines, are shown in Fig. 8. As was expected
from Weber’s law, the just noticeable difference increases
linearly with the absolute error level. For the angular er-
ror, the correlation coefficient is even as high as 0.9, with
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Fig. 8. (Color online) Indication of the just noticeable difference with respect to the absolute error level.

a p value of only 8.4 X 10~%, which means that the corre-
lation is considered to be highly significant.

Based on the analysis of the hyperspectral data, the
difference in terms of angular error between two methods
should be at least 0.06 X €,,x to be noticeable. For in-
stance, if method A has an angular error of 10°, then an
improvement of at least 0.6° is necessary; otherwise the
improvement will be not visible to a human observer. In
terms of perceptual Euclidean distance, the difference be-
tween two methods should be at least 0.05 X e, before it
is noticeable.

B. Implications

The notion of the just noticeable difference can be used to
indicate whether some proposed improvement is percep-
tually significant, i.e., whether or not a human observer is
likely to see the difference between the original result and
the result of the proposed improvement. To this end, some
recently proposed methods are examined, based on the
performance that is reported. The just noticeable differ-
ence can be computed by using the linear regression
analysis that was discussed in Subsection 7.A. For the an-
gular error, this results in the following formula to com-
pute the just noticeable difference (JND) between meth-
ods A and B:

JNDangular =0.06 X €max; (16)

where €,,,,=max(ey, €g) is the maximum error of the two
methods. Note that the fact that a proposed improvement
is not perceptually significant does not justify the conclu-
sion that the proposed method is without merit. Some-
times progress is made in little steps; so two or three
small improvements eventually might result in the same
increase in performance as one large improvement. The
results are summarized in Table 4.

Low-level framework. The framework that is used in
this paper to create the different output images for the
psychophysical experiments is proposed by van de Weijer
et al. [4]. In the original paper, several instantiations are
evaluated on a subset of the RGB images data set [5] that
is also used in this paper. From the experiments, it is con-
cluded that the first-order Gray-Edge performs best with
a median angular error of 4.1°. However, the performance
of the second-order Gray-Edge is very similar (median an-

gular error 4.3°). Consequently it can be concluded that
the difference between the first-order and the second-
order Gray-Edge is not perceptually significant, as the
just noticeable difference is 0.06 X 4.3° = 0.26°.
Gamut-constrained illuminant estimation. The gamut
mapping algorithm [8] is still one of the best-performing

Table 4. Relative Differences between the Best-
Performing Algorithm and the Other Methods®

Method Relative Difference

Low-level framework [4]
Proposed 1st-order Gray-Edge —

Proposed 2nd-order Gray-Edge +4.7%
General Gray-World +12.8%
Max-RGB +38.8%
Gray-World +43.8%
Gamut-constrained [10]
Proposed GCIE —
Gamut mapping +11.0%
Max-RGB +35.3%
Gray-World +70.6%
High-level information [39]
Indoor
Proposed BU + TD —
Proposed BU +0%
Proposed TD +5.3%
Best single algorithm +13.1%
Worst single algorithm +56.9%
Outdoor
Proposed BU + TD —
Proposed BU +4.3%
Proposed TD +4.3%
Best single algorithm +8.2%
Worst single algorithm +39.2%
Using indoor-outdoor classification
Proposed CDA —
Proposed CDP +4.1%
1st-order Gray-Edge +15.4%
2nd-order Gray-Edge +18.7%
White-Patch +31.0%
General Gray-World +34.8%
Gray-World +36.5%

“Performances are taken from the corresponding papers.
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algorithms. An extension to this gamut mapping ap-
proach is proposed by Finlayson et al. [10] and effectively
reduces the problem of illuminant estimation to illumi-
nant classification. In its most general form, i.e., assum-
ing as little a priori information as possible, the median
angular error improves from 2.92° for the regular gamut
mapping to 2.60°. Given the initial performance of 2.92°,
the just noticeable difference is 0.06 X 2.92° = 0.18°, so it
can be concluded that the obtained improvement is per-
ceptually significant.

Using high-level visual information. The idea of illumi-
nant classification is also present in the work of van de
Weijer et al. [39], where semantic information is incorpo-
rated into the illuminant estimation process. Given a
number of illuminant estimates, the most appropriate one
is selected by using the visual information that is present
in the input image. The initial set of estimates can be
based on the result of various illuminant estimation algo-
rithms. Alternatively, the visual information can be used
to estimate a plausible illuminant by using a top-down
approach. Experiments on both indoor and outdoor im-
ages show that the difference between the two alternative
sets of illuminant hypotheses is small (i.e., perceptually
not significant), but the combination of the two sets of il-
luminant hypotheses results in a perceptually significant
improvement over the best-performing single algorithm.
For indoor images, the angular error is reduced from 6.1°
to 5.3°, while for outdoor images the error can be reduced
from 4.9° to 4.5°. The just noticeable difference is 0.06 X
6.1° = 0.4° for indoor images and 0.06 X 4.9° = 0.3° for
outdoor images.

Using indoor—outdoor classification. Finally, Bianco et
al. [41] propose to apply different illuminant estimation
algorithms to indoor and outdoor images. For indoor im-
ages they propose to use the Shades-of-Gray algorithm
[3], while the second-order Gray-Edge [4] is proposed for
outdoor images. Without classification, the median angu-
lar error is 4.18°, so the just noticeable difference is 0.06
X 4.18° = 0.25°. Adding the classification step can reduce
the median error to 3.78° so this improvement can be
considered to be perceptually significant.

8. DISCUSSION

In this paper, a taxonomy of different distance (perfor-
mance) measures for color constancy algorithms is pre-
sented. Correlation between the observed quality of the
output images and the different distance measures for il-
luminant estimates has been analyzed. It has been inves-
tigated to what extent distance measures mimic differ-
ences in color naturalness of images as obtained by
human obervations.

Based on experimental results for two data sets, it can
be concluded that the correlation between the angular er-
ror and the perceptual quality of the output of color con-
stancy algorithms is not perfect, but quite high nonethe-
less. This means that the angular error is a reasonably
good indicator of the perceptual performance of color con-
stancy algorithms. The same conclusion holds for the Eu-
clidean distance, but the correlation of this measure can
be increased by using the perceptual Euclidean distance,
optimizing the weights for a specific data set. A significant
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improvement can be obtained with respect to the angular
error and the unweighted Euclidean distance. Using this
optimized weight combination may change the ranking of
color constancy algorithms, resulting in different conclu-
sions on the performance of these algorithms. Note that
the optimal weight combination depends on the data set
that is used, which means that a psychophysical experi-
ment is needed that uses a small subset of the complete
data set to obtain the optimal weights. However, using
these optimal weights can yield a significantly higher cor-
relation with human observers, which means that the re-
sults of color constancy algorithms can be interpreted
more reliably with respect to the perceptual quality of the
output.

In addition to the correlation between subjective (hu-
man observers) and objective performance measures, the
just noticeable difference is analyzed in this paper. It is
shown that, independent of the distance measure that is
used, performance improvements up to 5%—6% are not
noticeable to human observers. This finding is in line with
the values for the Weber fraction typically found in visual
perception (e.g., [48]). Note that this implies that the
summarizing statistic that is used to indicate the perfor-
mance of a color constancy algorithm for a set of images is
representative for the whole set. Previously, it was pro-
posed that the median is more suited than the mean [7].
While this conclusion is not challenged here, it is sug-
gested that other summarizing statistics can be used as
well. For instance, the trimean is robust to outliers, like
the median, but still has attention to the extreme values
in the distribution [36,37]. Using the trimean instead of
the median reveals small variations in the ranking of
color constancy algorithms, indicating that some color
constancy algorithms (e.g., second-order Gray-Edge) have
a wider distribution of illuminant estimate errors than
others (e.g., first-order Gray-Edge).

REFERENCES

1. E. H. Land, “The retinex theory of color vision,” Sci. Am.
237, 108-128 (1977).

2. G. Buchsbaum, “A spatial processor model for object colour
perception,” J. Franklin Inst. 310, 1-26 (1980).

3. G. D. Finlayson and E. Trezzi, “Shades of gray and colour
constancy,” in Twelfth Color Imaging Conference: Color
Science and Engineering Systems, Technologies, and
Applications (Society for Imaging Science and Technology,
2004), pp. 37-41.

4. J. van de Weijer, T. Gevers, and A. Gijsenij, “Edge-based
color constancy,” IEEE Trans. Image Process. 16,
2207-2214 (2007).

5. F. Ciurea and B. V. Funt, “A large image database for color
constancy research,” in Eleventh Color Imaging Conference:
Color Science and Engineering Systems, Technologies, and
Applications (Society for Imaging Science and Technology,
2003), pp. 160-164.

6. K. Barnard, L. Martin, B. V. Funt, and A. Coath, “A data
set for color research,” Color Res. Appl. 27, 147-151 (2002).

7. S. D. Hordley and G. D. Finlayson, “Reevaluation of color
constancy algorithm performance,” J. Opt. Soc. Am. A 23,
1008-1020 (2006).

8. D. A. Forsyth, “A novel algorithm for color constancy,” Int.
J. Comput. Vis. 5, 5-36 (1990).

9. G. D. Finlayson, S. D. Hordley, and P. M. Hubel, “Color by
correlation: a simple, unifying framework for color



2256

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

J. Opt. Soc. Am. A/Vol. 26, No. 10/October 2009

constancy,” IEEE Trans. Pattern Anal. Mach. Intell. 23,
1209-1221 (2001).

G. D. Finlayson, S. D. Hordley, and I. Tastl, “Gamut
constrained illuminant estimation,” Int. J. Comput. Vis. 67,
93-109 (2006).

D. H. Brainard and W. T. Freeman, “Bayesian color
constancy,” J. Opt. Soc. Am. A 14, 1393-1411 (1997).

M. D’Zmura, G. Iverson, and B. Singer, “Probabilistic color
constancy,” in Geometric Representations of Perceptual
Phenomena (Lawrence Erlbaum, 1995), pp. 187-202.

P. V. Gehler, C. Rother, A. Blake, T. P. Minka, and T. Sharp,
“Bayesian color constancy revisited,” in IEEE Conference
on Computer Vision and Pattern Recognition (IEEE, 2008),
pp- 1-8.

M. Ebner, “Evolving color constancy,” Pattern Recogn. Lett.
217, 1220-1229 (2006).

A. Gijsenij, T. Gevers, and J. van de Weijer, “Generalized
gamut mapping using image derivative structures for color
constancy,” Int. J. Comput. Vis. (to be published), http://
www.springerlink.com/content/q598825t7654648n/
?7p=155b2db7234942feaacfcf6d88a50b2c&pi=0.
(September 2009).

Color constancy demonstration (Mathematica),
cat.cvc.uab.es/~joost/code/ColorConstancy.zip.

dJ. von Kries, “Die gesichtsempfindungen,” in Handbuch der
Physiologie des Menschen (1904), Vol. 3, pp. 109-282.

G. West and M. H. Brill, “Necessary and sufficient
conditions for von Kries chromatic adaptation to give color
constancy,” J. Math. Biol. 15, 249-258 (1982).

G. D. Finlayson, M. S. Drew, and B. V. Funt, “Color
constancy: generalized diagonal transforms suffice,” J. Opt.
Soc. Am. A 11, 3011-3019 (1994).

B. V. Funt and B. C. Lewis, “Diagonal versus affine
transformations for color correction,” J. Opt. Soc. Am. A 17,
2108-2112 (2000).

Commission Internationale de LEclairage (CIE),
“Colorimetry,” CIE Publ. no. 15.2, 2nd ed. (CIE, 1986).
Commission Internationale de D’Eclairage (CIE),
“Improvement to industrial colour-difference evaluation,”
CIE Publ. no. 142-2001 (CIE, 2001).

M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta,
“A standard default color space for the Internet—sRGB,”
version 1.10 (1996) www.w3.org/Graphics/Color/
sRGB.html.

G. Wyszecki and W. S. Stiles, Color Science: Concepts and
Methods, Quantitative Data and Formulae (Wiley, 2000).
J. Slater, Modern Television Systems to HDTV and Beyond
(Taylor & Francis, 2004).

L. E. Arend, A. Reeves, J. Schirillo, and R. Goldstein,
“Simultaneous color constancy: papers with diverse
Munsell values,” J. Opt. Soc. Am. A 8, 661-672 (1991).

E. Brunswik, “Zur Entwicklung der Albedowahrnehmung,”
Z. Psychol. 109, 40-115 (1928).

P. B. Delahunt and D. H. Brainard, “Does human color
constancy incorporate the statistical regularity of natural
daylight?” J. Vision 4, 57-81 (2004).

D. H. Foster, S. M. C. Nascimento, and K. Amano,
“Information limits on neural identification of colored

http://

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Gijsenij et al.

surfaces in natural scenes,” Visual Neurosci. 21, 331-336
(2004).

J. E. Bailey, M. Neitz, D. Tait, and J. Neitz, “Evaluation of
an updated hrr color vision test,” Visual Neurosci. 22,
431-436 (2004).

H. A. David, “Ranking from unbalanced paired-comparison
data,” Biometrika 74, 432—-436 (1987).

R. L. Alfvin and M. D. Fairchild, “Observer variability in
metameric color matches using color reproduction media,”
Color Res. Appl. 22, 174-188 (1997).

E. Kirchner, G. J. van den Kieboom, L. Njo, R. Supeér, and
R. Gottenbos, “Observation of visual texture of metallic and
pearlescent materials,” Color Res. Appl. 32, 256-266
(2007).

Bruce Lindbloom’s

www.brucelindbloom.com.
R. V. Hogg and E. A. Tanis, Probability and Statistical
Inference (Prentice Hall, 2001).

J. W. Tukey, Exploratory Data Analysis (Addison-Wesley,
1977).

H. F. Weisberg, Central Tendency and Variability (Sage
Publications, 1992).

A. Gijsenij and T. Gevers, “Color constancy using natural
image statistics,” in IEEE Conference on Computer Vision
and Pattern Recognition (IEEE, 2007), pp. 1-8.

J. van de Weijer, C. Schmid, and J. J. Verbeek, “Using
high-level visual information for color constancy,” in IEEE
International Conference on Computer Vision (IEEE, 2007),
pp- 1-8.

S. Bianco, F. Gasparini, and R. Schettini, “Consensus-based
framework for illuminant chromaticity estimation,” J.
Electron. Imaging 17, 023013 (2008).

S. Bianco, G. Ciocca, C. Cusano, and R. Schettini,
“Improving color constancy using indoor-outdoor image
classification,” IEEE Trans. Image Process. 17, 2381-2392
(2008).

A. Chakrabarti, K. Hirakawa, and T. Zickler, “Color
constancy beyond bags of pixels,” in IEEE Conference on
Computer Vision and Pattern Recognition (IEEE, 2008), pp.
1-8.

B. V. Funt, K. Barnard, and L. Martin, “Is machine colour
constancy good enough?” in Computer Vision—ECCV’98:
5th European Conference on Computer Vision (Springer,
1998), pp. 445-459.

G. D. Finlayson, S. D. Hordley, and P. Morovic, “Colour
constancy using the chromagenic constraint,” in IEEE
Conference on Computer Vision and Pattern Recognition
(IEEE, 2005), pp. 1079-1086.

C. Fredembach and G. D. Finlayson, “The bright-
chromagenic algorithm for illuminant estimation,” J.
Imaging Sci. Technol. 52, 040906 (2008).

S. D. Hordley, “Scene illuminant estimation: past, present,
and future,” Color Res. Appl. 31, 303-314 (2006).

E. H. Weber, “Der Tastinn und das Gemeingfiihl,” in
Handworterbiich der Physiologie (1846), Vol. 3, pp.
481-588.

T. N. Cornsweet, Visual Perception (Academic, 1970).

web site, http://


http://www.springerlink.com/content/q598825t7654648n/?p=155b2db7234942feaacfcf6d88a50b2c&pi=0
http://www.springerlink.com/content/q598825t7654648n/?p=155b2db7234942feaacfcf6d88a50b2c&pi=0
http://www.springerlink.com/content/q598825t7654648n/?p=155b2db7234942feaacfcf6d88a50b2c&pi=0
http://cat.cvc.uab.es/~joost/code/ColorConstancy.zip
http://cat.cvc.uab.es/~joost/code/ColorConstancy.zip
www.w3.org/Graphics/Color/sRGB.html
www.w3.org/Graphics/Color/sRGB.html
http://www.brucelindbloom.com
http://www.brucelindbloom.com

