

Three things everyone should know to improve object retrieval

Relja Arandjelović and Andrew Zisserman

Visual Geometry Group, Department of Engineering Science, University of Oxford

Objectives

- Find all instances of an object in a large dataset
- Do it instantly
- Be robust to scale, viewpoint, lighting, partial occlusion

1. RootSIFT

- Not only specific to retrieval
- Everyone using SIFT can benefit
- Hellinger or χ^2 measures outperform Euclidean distance when comparing histograms, examples in image categorization, object and texture classification etc.
- SIFT is a histogram: can performance be boosted using a better distance measure?
- Hellinger kernel (Bhattacharyya's coefficient) for L1 normalized histograms x and y:

$$H(x, y) = \sum_{i=1}^{n} \sqrt{x_i y_i}$$

- Explicit feature map of x into x':
 - L1 normalize x
 - element-wise square root x to give x'
- Computing Euclidean distance in the feature map space is equivalent to Hellinger distance in the original space
- Extremely simple to implement and use:
- One line to convert SIFT to RootSIFT:

rootsift= sqrt(sift / sum(sift));

RootSIFT

- Conversion from SIFT to RootSIFT can be done on-the-fly
 - No need to modify your favourite SIFT implementation
 - No need to re-compute stored SIFT descriptors for large image datasets
 - No added storage requirements
 - Applications throughout computer vision

k-means, approximate nearest neighbour methods, soft-assignment to visual words, Fisher vector coding, PCA, descriptor learning, hashing methods, product quantization etc.

Superior to SIFT in every single setting

Large scale object retrieval

J			
Retrieval method	Oxford 5k	Oxford 105k	Paris 6k
SIFT: tf-idf ranking	0.636	0.515	0.647
SIFT: tf-idf with spatial reranking	0.672	0.581	0.657
Philbin et.al. 2010 descriptor learning	0.707	0.615	0.689
RootSIFT: tf-idf ranking	0.683	0.581	0.681
RootSIFT: tf-idf with spatial reranking	0.720	0.642	0.689

Image classification: (Using the evaluation package of [Chatfield11])

Descriptor (dense + PHOW)	PASCAL VOC 2007
SIFT	0.5530
RootSIFT	0.5614

 Repeatability under affine transformations

RootSIFT: 26 matches

2. Database-side feature augmentation

- Construct an image graph [Philbin08]
 - Nodes: images
 - Edges connect images containing the same object
- Obtain a better model for the database images [Turcot & Lowe 09] (AUG)
 - Augment database images with features from other images of the same object
 - Each image is augmented with all visual words from neighbouring images on graph
- Improves recall but precision is sacrificed
 - We propose spatial augmentation (SPAUG):
 - Only augment with *visible* visual words
 - 28% less features are augmented than in the original method

Retrieval method	Oxford 5k	Oxford 105k
tf-idf ranking	0.683	0.581
tf-idf with spatial reranking	0.720	0.642
AUG: tf-idf ranking	0.785	0.720
AUG: tf-idf with spatial reranking	0.827	0.759
Spatial AUG: tf-idf ranking	0.820	0.746
Spatial AUG: tf-idf with spatial reranking	0.838	0.767
		* Uses RootSIFT

3. Discriminative query expansion

- Query expansion (QE)
 - BoW vectors from spatially verified regions are used to build a richer model for the query
 - The de facto standard: Average query expansion (AQE) [Chum07]:
 - Use the mean of the BoW vectors to re-query
- Discriminative query expansion (DQE):
 - Train a linear SVM classifier
 - Use query expanded BoW vectors as positive training data
 - Use low ranked images as negative training data
 - Rank images on their signed distance from the decision boundary
- DQE is efficient:
 - Ranking images using inverted index (as in average QE case)
 - Both operations are just scalar products between a vector and x
 - For average QE the vector is the average query idf-weighted BoW vector
 - For discriminative QE the vector is the learnt weight vector w
 - Training the linear SVM on the fly takes negligible amount of time (30ms on average)
- Significant boost in performance at no added cost, mAP on Oxford105k:

Retrieval method	SIFT	RootSIFT
tf-idf with spatial reranking	0.581	0.642
Chum et.al. 2007: Average Query Expansion (AQE)	0.726	0.756
Discriminative Query Expansion (DQE)	0.752	0.781

Results

- Combine all three improvements into one retrieval system
- New state of the art on all three datasets (without soft assignment!):

Oxford 5k	Oxford 105k	Paris 6k
0.929	0.891	0.910

RootSIFT tf-idf 0.5 0.6 0.7 0.8 0.9 1 Average Precision

Summary

- RootSIFT:
 - Improves performance in every single experiment
 - Every system which uses SIFT is ready to use RootSIFT
 - Easy to implement, no added computational or storage cost
- Database-side feature augmentation:
 - Useful for increasing recall
 - Our extension improves precision but increases storage cost
- Discriminative query expansion:
- Consistently outperforms average query expansion
- At least as efficient as average QE, no reasons not to use it